Knowledge Discovery in the Prediction of Bankruptcy
نویسندگان
چکیده
Knowledge discovery in databases (KDD) is the process of discovering interesting knowledge from large amounts of data. However, real-world datasets have problems such as incompleteness, redundancy, inconsistency, noise, etc. All these problems affect the performance of data mining algorithms. Thus, preprocessing techniques are essential in allowing knowledge to be extracted from data. This work presents a real world application of knowledge discovery in databases, with the objective of prediction of bankruptcy. For this task fuzzy classification models based on fuzzy clustering are used, which are developed solely from numerical data. This data set has missing values, extreme values and also presents a much smaller bankruptcy class than the not bankruptcy class, which makes it a challenging problem in the scope of KDD. Keywords— Knowledge discovery in databases, feature selection, missing data, noisy data, prediction of bankruptcy, fuzzy classifica-
منابع مشابه
Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملThe discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms
Numerous studies on bankruptcy prediction have widely applied data mining techniques to finding out the useful knowledge automatically from financial databases, while few studies have proposed qualitative data mining approaches capable of eliciting and representing experts’ problem-solving knowledge from experts’ qualitative decisions. In an actual risk assessment process, the discovery of bank...
متن کاملAn Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange
Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks. The present study proposes fuzzy neural networks to predi...
متن کاملUsing the Imperialistic Competitive Algorithm Model in Bankruptcy Prediction and Comparison with Genetic Algorithm Model in Listed Companies of Tehran Stock Exchange
Bankruptcy prediction is a major issue in classification of companies. Since bankruptcy is extremely costly, investors, owners, managers, creditors, and government agencies are interested in evaluating the financial status of companies. This study tried to predict bankruptcy among companies registered in Tehran Stock Exchange (Iran) by designing imperialist competitive algorithm and genetic alg...
متن کاملApplication of Genetic Algorithm in Development of Bankruptcy Predication Theory Case Study: Companies Listed on Tehran Stock Exchange
The bankruptcy prediction models have long been proposedas a key subject in finance. The present study, therefore, makes aneffort to examine the corporate bankruptcy prediction through employmentof the genetic algorithm model. Furthermore, it attempts to evaluatethe strategies to overcome the drawbacks of ordinary methods forbankruptcy prediction through application of genetic algorithms. Thesa...
متن کامل